Delphi Lesson 3: Classes

From Records:

Records are a collection of variable types that have been grouped together into one large variable. Classes build on this by adding procedures which operate on that data. For example a record called address might have the variables streetname and streetnumber, a class might have both of those variables plus a procedure called SendMail or a function CheckIfAnyoneHome : boolean.

Accessing Variables and Procedures/Functions:

When you are using a procedure as part of class you call it with the . operator the same way you have been doing with variables. A class called Car might have a procedure accelerate called by Car.Accel or might have a function Car.GetVelocity.

Syntax:

//The class is declared inside the Type field

Type

Car = class

//next variables and proc/funcs are declared

private: //this indicates that anything declared after this cannot be used outside of the class

Velocity : Integer;

Position : LongInt;

public: //anything after this is visible and can be modified by any part of the program

Name
 : String;

Procedure Accel;

Function GetVelocity : Integer;

Procedure Rename (S : String);

End; //remember this part

//no code is written inside this part of the program / unit

//if this is a unit write the code in the implementation (or anywhere inside a program)

Implementation

Procedure CAR.Accel; //Call it by <type>.<method>

Begin

Inc(Velocity); //Velocity is part of Car so does not have to be called by Car.Velocity inside

//the same applies to buttons and labels inside forms

End;

Function Car.GetVelocity : Integer;

Begin

Result := Velocity; //Result is the same as GetVelocity except it is only a variable and

 //cannot be used for recursion

End;

Procedure Car.Rename (S : String);

Begin

Name := S;

End;

//creating a variable of type Car is done the same way as any other type

Var A : Car;

//NOTE you cannot use this variable yet, this will be taught next class

MISC:

New projects:
Each time you work on something new, create a new application or select open project. If you use open you might end up just opening a unit and the main program will not have changed.

Comments:
{} (**) both go across many lines // only covers one line. It might be useful to use one for commenting out code and the other for descriptions.

Program Reset:
If your program crashes and you see one line of code being highlighted press CTRL-F2 or got to Project | Program Reset to stop the program. Or if you think nothing is wrong you can click the run button again and it will run from where it left off.

Result:

Can be used inside a function replacing the <FunctionName> := … statement. However, you can write Result := X + Result and it will not call the function again causing recursion.

Terminology:

Fields/Properties are variables inside of a class

Methods are procedures and functions inside a class

Encapsulation is the idea of hiding anything the main program shouldn't play with (using Private:)

An instance of a class is a variable of that type of class (eg Var A : Car //A is an instance of Car)

Instances can also be called objects, A is an object Car is a class. Objects are the actual variables, classes are types.

Assignment:

Create the code (could even be done on paper) for a class called LightBulb. It should have the fields Off, PowerRating and Functional, with methods Toggle, Smash, GetLightOutput. Make private and public sections and choose where to put each field or method.
