ECE342 Computer Hardave
Department of Electrical and Computer Engineering
University of Toronto

Lab 2: Reaction Timer

In this lab, you will implement a system to measure a persons reaction time to a visual stimulus.
The system, called a reaction timeonsists of tw inputs and a number of outputs. The tw

inputs are switches on the protoboard call€landSTOP. The outputs are: an LED on the proto-
board and the 7-genent displays on the Ultragizmo board.

The reaction time is measured in the faflog way. The user toggles the GO switch taimethe

test. After a short period of time, the reaction timer turns on the LED. As soon as the user sees the
LED light up, he/she must toggle the@H switch asdst as possible. The reaction timer mea-

sures the time from when the LED is turned on to when the user togglesQRes®@/ltich. The

time is to be displayed on the 7gsgent displays in hundredths of a second. The reaction timer
should then be ready for thexti¢est and bgin when the GO switch is turned oreag

You are to implement the reaction timer in threted#int ways. The first tw ways (assembly and
C) should be completed in the first week of the lab and the tlaydfwll hardware) should be
completed in the second week of the lab

1. Assembly program with polling

The first vay you will implement the reaction time is with an assembly prograrkedp track of
time you will use the DBART timer/counter which is inggated within the 68306 processwour
program should read thales of the switches andkithe LED using the parallel intade/
timer circuit (PIT) on the Ultragizmo board. Theease-sgment displays should be accessed
through a rgister implemented in the FPGA. A block diagram of the reaction timer and more
information on each of the components igegi belav.

68000 68000 BUS FLEX10K70
CPU B - FPGA
PIT 7-Segment Display

L

Switches LED

a) Timer/Counter

The DUART timer/counter is located in the serial module on the proceBsertimer/counter is
16-bits wide and its clock can be programmed to come from one of a number of sources. It has
two modes: timer and couni&kle will only be using the counter mode in this. |@mce the

counter is started, it countswlio to zero from a preloadeadie. When it reaches ze®)000, it

rolls over to$FFFF and continues counting.

Before the counter can be used it needs to be configured by watues\wo a number of ges-
ters. The rgisters can be written just gkary memory location. In the description b&lmnly the
names of the gesters are gen. The addresses amadable in the filat_poll.s available on the
course webpage.o should use this file as a starting point for your program.

* Selecting Counter mode and Setting the Clock Soce:

To select counter mode alue 0of$90 must be written to thAuxiliary Control Register
(ACR). We will be using a clock of 19.2 kHz foaRs 1 and 2 of the lafio set the counter
clock to this alue, write &CC to theClock-Select Register (CSR).

* Preloading a \alue and Reading the Count

The counter can be preloaded withadue by writing to th&Counter Upper andLower Pre-

load Registers (CUR and CLR). Thealue of current count can be read by reading the CUR
and CLR one at a time. The coumadwe should only be read after the counter has been
stopped.

» Starting/Stopping the Counter

A read of thetart Counter Command Register (STC), starts the countek read of theStop
Counter Command Register (SPC), stops the counter

* Detecting a Rollwer

Upon reaching0000, the counter sets tlweunter/timer ready bit in thelnterrupt Satus
Register (ISR[3]). By polling on bit 3 of the ISR, the reaction timer can detect when the
counter has rolledver. Note that this bit is reset when the counter is stopped.

b) PIT

You are required to use tharBllel-Interbice/Tmer (PIT) port on the Ultragizmo board to access
the switches and the LED on the protoboard. Since using the PIT has bemudo other
courses, it will not be discussed herer Fiformation, please refer to the Ultragizmo manual on
pages 113-116. If you choose the 1/O ports on the PIT wigalycan connect the protoboard to
the PIT with just a ribbon cable.

c) Seren-Segment Displays

You should write to the sen-sgment displays the samewyou did in Lab 1. Since you are dis-
playing on all four displays, you will need to implement a 16-lgiister in the FPGA. Theal
ues displayed should badacimal representationof the reaction time.df example, if the
reaction time is 0.95 seconds then you should disfl@@5” rather than 005F”. Do not add

ary special hardare to implement this functionalityhe comersion is to be done in your assem-
bly program.

d) Other Useful Info

For delugging purposes you mayawt to display intermediate results to the terminalt€fresh
your memory on ho to do this, read pages 96-99 of the manual.

2. C program with interrupts

This implementation of the reaction timer will be similar &tRL with two exceptions. The first is
that this implementation will be written in the C programming language. The second &s/the w
in which the counter rolicer is detected. Ind?t 1 the rolleer was detected by polling on bit
ISR[3]. In this part, an interrupt service routine will be used to handle theaollde counter

will be configured to generate an interrupt wB&®00 is reached.

a) Generating interrupts with the counter

Since the counter is an on-chip peripheral, it generates an internal interrupt. Some configuration
needs to be doneen for internal interrupts. Aggn, the rgisters are only gen by name here and
a file with the releant reyister addresses isvgin on the webpage.

First, the l@el at which the counter will interrupt the processor needs to be specdigdeifupt

at level 4, the @alue$04 must be written to thBystem Register (SYSR). Nat, a vector number

needs to be chosen fromblle 8 on page 101 of the manuak Will choose64 by writing a64

into thelnterrupt Vector Register (IVR). Finally the processor needs to lnthe starting address

of the interrupt service routine. This is done by writing the starting address of the interrupt service
routine to the location corresponding tctor number 64 in the Interrupéstor &ble, location

$100.

After you hare set the igisters abwe, you need to change the interrupt priority in the processors
status rgister You should set it to <4 to enable interruptswabihis lerel (the counter is set to
interrupt at leel 4).

b) C programming Language

* Accessing egisters

The easiest ay to access agesters is through a pointer to a charaatdral). We use chars
because theare one byte long just kEkregisters. Ibr example:

char *sysr;

is a declaration of a pointer that will point to the systegister To assign the address of the
register to the pointer:

sysr = (char *)OxFFFFFFFE;
To write a \alue to the rgister you must dereference the pointer and assignatuey
*sysr = 0x4;

* The interrupt service routine

The code you will write for the interrupt service routine is to be placed in a C function called
interrupt(). To male it work, you are praided with the wrapping that alls a C function to

be used as the interrupt service routine. The wrapping is located in a filecoatl®dnd is
calledintrstub(). It saves all the rgisters, calls the Interrupt function defined in C and uses the
rte instruction instead afts when it completes.

* Specifying the starting addess of the interrupt sevice routine

Since addresses are longnds (4 bytes), you should use a pointer to mah to access the
location in the interruptactor table where you will store the address of the interrupt service
routine. Note that the addressiutirstub(), and nointerrupt(), will be stored in this location:

int *int_addr;
int_addr = (int *)(0x100);
*Int_addr = (long)(intrstub);

 Writing to the hex displays

To access the 16-bitgister implemented in the FPGA, declare a pointersh@ t i nt
(defined as 2 bytes long):

short int *hex;

* Files that need to be included and Madfiles

A stripped-davn version of the C code, rt_int.c, is pided on the webpage. Use this as a
starting point for your implementation. The necessaryefilak and other files you will need
(asm.h and cint.S crt0.S) are also there.od should place them all in the same directory

To generate an srec file, type reak _int. The madfile first generates the necessary object
files (crt0.o, rt_int.o, cint.0). It then links them together to generate thecetablet_int.
Finally, rt_int is corverted to an srec file which can benshdoaded to the Ultragizmo board.

It is interesting to look at the code generated by the C comilelisassemble thexecutable
use:nb8k- cof f - obj dunp -d rt _i nt.Can you see hothe disassembled code relates
to your C program? En though thgare not the same program compare your assembly code
from part 1 to the code generated by the C compiler

3. Full hardware implementation

In this portion of the lab, you are required to implement a harelwersion of the reaction timer

using the FPGA. In addition you will create interé circuitry to aller the reaction timer to com-
municate with the 68000 microprocessbine 68000 should be able to initiate the reaction test
while your reaction timer should be able to interrupt the 68000 when it has calculated the reaction
time, and send the timever the lois. In this vay, your hardvare does all of the evk and only

interrupts processing once the reaction time isMnd hus no polling is required by the proces-

sor at all. It is free to do other useful computations. Each of théepsstwo versions has used

polling to check when the user toggles the switch.

The Figure belw shavs the basic structure of the circuit that you are to implemensifplic-

ity, the GO switch will not be used in this implementatioou Will write a short 68000 program
that will communicate with the reaction timand initiate the test a short time after the program
starts.Note that aside from theus interfice, this circuit is slightly dérent than theersion gven

in Section 7.14.3f the course t4, since it needs additional logic for proper interrupt handling.

D, W1
Dg PRE
b a
g <
(9] n
2R\
A23-A20 . : |
s : _l_,erte_reg
UDS BUS Combinational
— | Interface Logic
o LDS) | oy Read_rg
D RW >
m —
o }LE 1
£ | DTACK
N «
g | JRQSF ACTIVE LOW! !
5 215‘[)0 Q[15..0] Enable
TRI|STATE BUF Counter
| Rese
PCLK N Clock Divider
> 1000 Hz
N

Implement the circuit shvan in the block diagram entirely in Verilog. The following is a more
detailed description of the operation and the main parts of the design:

Design aBus-Interface circuit. This module should assert a signal naiveite reg when the
68000 requests a write to location $B00000 in menfirpilarly it should asseRead_reg

when a read from $B00000 is requestenl ¥hay look at theommunicate.v file given in

Lab1l as a guideline for this circuit. Basically it is a simple combinational circuit that looks for
when a “B” is on the upper nibble of the address lines, and all thA&s bbS, UDS are lav.
Reads and writes are féifentiated by th&W signal. You must also generate an aetiow
acknavledge signaDTACK, as soon as eith&®ead reg or Write reg is asserted. This signal
must be connected in @pen-drain configuration.

The START andSTOP flip-flops are triggered by tha&fite reg signal and latch thealue on
Dgo,D; respecirely. The 68000 can control the state of these flip-flops by writing to bit-0 and

bit-1 of address $B00000. The circuit is initialized by writing a logic-1 t&TERT flip-flop
and a logic-0 to th&TOP flip-flop. Your combinational logic should respond to this condi-
tion by lighting up a LED on the Ultragizmo board and enabling the cowatérleeps track
of the reaction time. Notice that t&FOP flip-flop has a preset input hasd to a switch on
the digital board. When this switch is changed to a logic-B5i@P flip-flop will immedi-
ately go high. ¥ur combinational logic circuitry should walisable the counter enable, turn
off the LED, and request an interrupt by bringing tR@S- line low. Derive logic equations
for combinational logic to produce the counter enable, interrupt request and MeEBidFi
nals.

The Ultragizmo board is equipped with a programmable clock that outputs a signal named
PCLK. This clock can be programmed toydrequeng between 392kHz and 90MHz. Read
Section 8.70f the Ultragizmo board manual to learn how to configure the clock frequency.
Your reaction timer will use a counter cleckby a 1000Hz signal (we will measure millisec-
onds). Use an appropriateock-divider circuit along with the programmable clock to gener-
ate the 1000Hz signal. What frequgneould you set the programmable clock toZHuoary

bits should the clock-dider use?

The 16-bit counter that will keep track of the reaction time. Since it is clkatby a 1000Hz
signal, it will be able to&ep track of reaction times up to 65.535 seconds. The counter should
anenable input as shwn in the block diagram so it does not start counting until the appropri-
ate time.

Notice that there is neesetsignal connected on the countésu will need to reset the counter
every time after the first reaction test.\ix® a method to alo the 68000 to reset the counter
(the most simple solution just adds omé&& wire to the circuit with no additional logic).

Implement each of the components discussedeainoVerilog. In the top-level file wrapper.v,

“wire” these components together so thaythedel the block diagram for the reaction timer
Compile andsimulate each component, as well as the entire desigte that the signals in
wrapper.v may be labelled as Ids,uds, etc., but they still correspond.dS, UDS. You may use

the signakfpga_digital[0] to provide the SW1 signal from the digital board. However it will be
necessary to connect a 40 pin ribbon cable from the Ultragizmo board to the digital board. This
will be demonstrated by aAT

In most cases this cicuit calculates the eaction time with a small eror. What are the
sources of this eror, and what is its maximum \alue (in milliseconds)?

In order to use the circuit that yoe’ created, it is necessary to write a 68000 program to initiate
the test, and handle the interrupts. Write the softvdrver in ‘C’. A skeleton program, rt_hw,
is given on the webpage.

Examine the program carefullyou should notice that this program uses macros of the form
pokeb(address, data), pokew(address, data), pokel (address, data). These macros write thaie

of data into the memory location specified by #wEress. Thepokeb macro writes byte sized
data,pokew writes word (2-bytes) sized data whipekel write long (4-bytes) sized data. Similarly
the program also uses theskw(address) macro. It returns wrd sized data contained at the spec-
ified address. Code each of these macros in ‘C’ and place thepokeh.

Create another makle to compile this file. Add the folldng code to the templatevgin:

* Add code to main that will initiate the reaction tesiuYieed to write the appropriatelwe
into theSTART andSTOP flip-flops as discussed ptieusly. Use thepokew macro.

» Add code to thénterrupt routine so that after it reads the reaction time, it will de-assert the
interrupt request. If you donte-assert the request then the processor will continuously get
interrupted. A@in write the appropriatealue into the flip-flops so that the combinational
logic de-asserts the request.

» Add code to the interrupt routine to print out the reaction time to the terminal. Do this in tw
ways. The first method is to simply use ginmtf function. The second method is to write your
own function to cowert the time to a numeric string and print the string usingutssfunc-
tion. Compare the sizes of the srec files in thee dfferent \ersions.

