
ECE342 Computer Hardware
Department of Electrical and Computer Engineering

University of Toronto

Lab 2: Reaction Timer

In this lab, you will implement a system to measure a persons reaction time to a visual stimulus.
The system, called a reaction timer, consists of two inputs and a number of outputs. The two
inputs are switches on the protoboard calledGO andSTOP. The outputs are: an LED on the proto-
board and the 7-segment displays on the Ultragizmo board.

The reaction time is measured in the following way. The user toggles the GO switch to begin the
test. After a short period of time, the reaction timer turns on the LED. As soon as the user sees the
LED light up, he/she must toggle the STOP switch as fast as possible. The reaction timer mea-
sures the time from when the LED is turned on to when the user toggles the STOP switch. The
time is to be displayed on the 7-segment displays in hundredths of a second. The reaction timer
should then be ready for the next test and begin when the GO switch is turned on again.

You are to implement the reaction timer in three different ways. The first two ways (assembly and
C) should be completed in the first week of the lab and the third way (full hardware) should be
completed in the second week of the lab.

1. Assembly program with polling

The first way you will implement the reaction time is with an assembly program. To keep track of
time you will use the DUART timer/counter which is integrated within the 68306 processor. Your
program should read the values of the switches and drive the LED using the parallel interface/
timer circuit (PIT) on the Ultragizmo board. The seven-segment displays should be accessed
through a register implemented in the FPGA. A block diagram of the reaction timer and more
information on each of the components is given below.

FLEX10K70
FPGA

68000
CPU

68000 BUS

7-Segment DisplayPIT

Switches LED

a) Timer/Counter

The DUART timer/counter is located in the serial module on the processor. The timer/counter is
16-bits wide and its clock can be programmed to come from one of a number of sources. It has
two modes: timer and counter. We will only be using the counter mode in this lab. Once the
counter is started, it counts down to zero from a preloaded value. When it reaches zero,$0000, it
rolls over to$FFFF and continues counting.

Before the counter can be used it needs to be configured by writing values to a number of regis-
ters. The registers can be written just like any memory location. In the description below, only the
names of the registers are given. The addresses are available in the filert_poll.s available on the
course webpage. You should use this file as a starting point for your program.

• Selecting Counter mode and Setting the Clock Source:

To select counter mode a value of$90 must be written to theAuxiliary Control Register
(ACR). We will be using a clock of 19.2 kHz for Parts 1 and 2 of the lab. To set the counter
clock to this value, write a$CC to theClock-Select Register (CSR).

• Preloading a Value and Reading the Count

The counter can be preloaded with a value by writing to theCounter Upper andLower Pre-
load Registers (CUR and CLR). The value of current count can be read by reading the CUR
and CLR one at a time. The count value should only be read after the counter has been
stopped.

• Starting/Stopping the Counter

A read of theStart Counter Command Register (STC), starts the counter. A read of theStop
Counter Command Register (SPC), stops the counter.

• Detecting a Rollover

Upon reaching$0000, the counter sets thecounter/timer ready bit in theInterrupt Status
Register (ISR[3]). By polling on bit 3 of the ISR, the reaction timer can detect when the
counter has rolled over. Note that this bit is reset when the counter is stopped.

b) PIT

You are required to use the Parallel-Interface/Timer (PIT) port on the Ultragizmo board to access
the switches and the LED on the protoboard. Since using the PIT has been covered in other
courses, it will not be discussed here. For information, please refer to the Ultragizmo manual on
pages 113-116. If you choose the I/O ports on the PIT wisely, you can connect the protoboard to
the PIT with just a ribbon cable.

c) Seven-Segment Displays

You should write to the seven-segment displays the same way you did in Lab 1. Since you are dis-
playing on all four displays, you will need to implement a 16-bit register in the FPGA. The val-
ues displayed should be adecimal representation of the reaction time. For example, if the
reaction time is 0.95 seconds then you should display “0095” rather than “005F”. Do not add

any special hardware to implement this functionality. The conversion is to be done in your assem-
bly program.

d) Other Useful Info

For debugging purposes you may want to display intermediate results to the terminal. To refresh
your memory on how to do this, read pages 96-99 of the manual.

2. C program with interrupts

This implementation of the reaction timer will be similar to Part 1 with two exceptions. The first is
that this implementation will be written in the C programming language. The second is the way
in which the counter rollover is detected. In Part 1 the rollover was detected by polling on bit
ISR[3]. In this part, an interrupt service routine will be used to handle the rollover. The counter
will be configured to generate an interrupt when$0000 is reached.

a) Generating interrupts with the counter

Since the counter is an on-chip peripheral, it generates an internal interrupt. Some configuration
needs to be done even for internal interrupts. Again, the registers are only given by name here and
a file with the relevant register addresses is given on the webpage.

First, the level at which the counter will interrupt the processor needs to be specified. To interrupt
at level 4, the value$04 must be written to theSystem Register (SYSR). Next, a vector number
needs to be chosen from Table 8 on page 101 of the manual. We will choose64 by writing a64
into theInterrupt Vector Register (IVR). Finally the processor needs to know the starting address
of the interrupt service routine. This is done by writing the starting address of the interrupt service
routine to the location corresponding to vector number 64 in the Interrupt Vector Table, location
$100.

After you have set the registers above, you need to change the interrupt priority in the processors
status register. You should set it to <4 to enable interrupts above this level (the counter is set to
interrupt at level 4).

b) C programming Language

• Accessing registers

The easiest way to access a registers is through a pointer to a character (char). We use chars
because they are one byte long just like registers. For example:

char *sysr;

is a declaration of a pointer that will point to the system register. To assign the address of the
register to the pointer:

sysr = (char *)0xFFFFFFFE;

To write a value to the register, you must dereference the pointer and assign it a value:

*sysr = 0x4;

• The interrupt service routine

The code you will write for the interrupt service routine is to be placed in a C function called
interrupt(). To make it work, you are provided with the wrapping that allows a C function to
be used as the interrupt service routine. The wrapping is located in a file calledcint.S and is
calledintrstub(). It saves all the registers, calls the Interrupt function defined in C and uses the
rte instruction instead ofrts when it completes.

• Specifying the starting address of the interrupt service routine

Since addresses are long words (4 bytes), you should use a pointer to anint to access the
location in the interrupt vector table where you will store the address of the interrupt service
routine. Note that the address ofintrstub(), and notinterrupt(), will be stored in this location:

int *int_addr;
int_addr = (int *)(0x100);
*int_addr = (long)(intrstub);

• Writing to the hex displays

To access the 16-bit register implemented in the FPGA, declare a pointer to ashort int
(defined as 2 bytes long):

short int *hex;

• Files that need to be included and Makefiles

A stripped-down version of the C code, rt_int.c, is provided on the webpage. Use this as a
starting point for your implementation. The necessary makefiles and other files you will need
(asm.h and cint.S, crt0.S) are also there. You should place them all in the same directory.

To generate an srec file, type make rt_int. The makefile first generates the necessary object
files (crt0.o, rt_int.o, cint.o). It then links them together to generate the executablert_int.
Finally, rt_int is converted to an srec file which can be downloaded to the Ultragizmo board.

It is interesting to look at the code generated by the C compiler. To disassemble the executable
use:m68k-coff-objdump -d rt_int. Can you see how the disassembled code relates
to your C program? Even though they are not the same program compare your assembly code
from part 1 to the code generated by the C compiler.

3. Full hardware implementation

In this portion of the lab, you are required to implement a hardware version of the reaction timer
using the FPGA. In addition you will create interface circuitry to allow the reaction timer to com-
municate with the 68000 microprocessor. The 68000 should be able to initiate the reaction test
while your reaction timer should be able to interrupt the 68000 when it has calculated the reaction
time, and send the time over the bus. In this way, your hardware does all of the work and only
interrupts processing once the reaction time is known. Thus no polling is required by the proces-
sor at all. It is free to do other useful computations. Each of the previous two versions has used
polling to check when the user toggles the switch.

The Figure below shows the basic structure of the circuit that you are to implement. For simplic-
ity, the GO switch will not be used in this implementation. You will write a short 68000 program
that will communicate with the reaction timer, and initiate the test a short time after the program
starts.Note that aside from the bus interface, this circuit is slightly different than the version given
in Section 7.14.3 of the course text, since it needs additional logic for proper interrupt handling.

.

A23-A20

AS

UDS

LDS

R/W

Write_reg

Read_reg

BUS
Interface

DTACK

U
ltr

ag
iz

m
o

B
U

S

D15-D0

S
TA

R
T

S
TO

P

D0

D1

IRQSF

Combinational
Logic

EnableQ[15..0]

PCLK

Counter

LED1

PRE

SW1

Clock Divider

TRI STATE BUF

1000 Hz

ACTIVE LOW!

Reset

Implement the circuit shown in the block diagram entirely in Verilog. The following is a more
detailed description of the operation and the main parts of the design:

• Design aBus-Interface circuit. This module should assert a signal namedWrite_reg when the
68000 requests a write to location $B00000 in memory. Similarly it should assertRead_reg
when a read from $B00000 is requested. You may look at thecommunicate.v file given in
Lab1 as a guideline for this circuit. Basically it is a simple combinational circuit that looks for
when a “B” is on the upper nibble of the address lines, and all three ofAS, LDS, UDS are low.
Reads and writes are differentiated by theR/W signal. You must also generate an active-low
acknowledge signalDTACK, as soon as eitherRead_reg or Write_reg is asserted. This signal
must be connected in anopen-drain configuration.

• TheSTART andSTOP flip-flops are triggered by theWrite_reg signal and latch the value on
D0,D1 respectively. The 68000 can control the state of these flip-flops by writing to bit-0 and
bit-1 of address $B00000. The circuit is initialized by writing a logic-1 to theSTART flip-flop
and a logic-0 to theSTOP flip-flop. Your combinational logic should respond to this condi-
tion by lighting up a LED on the Ultragizmo board and enabling the counter, so it keeps track
of the reaction time. Notice that theSTOP flip-flop has a preset input hooked to a switch on
the digital board. When this switch is changed to a logic-1 theSTOP flip-flop will immedi-
ately go high. Your combinational logic circuitry should now disable the counter enable, turn
off the LED, and request an interrupt by bringing theIRQSF line low. Derive logic equations
for combinational logic to produce the counter enable, interrupt request and LED drive sig-
nals.

• The Ultragizmo board is equipped with a programmable clock that outputs a signal named
PCLK. This clock can be programmed to any frequency between 392kHz and 90MHz. Read
Section 8.7 of the Ultragizmo board manual to learn how to configure the clock frequency.
Your reaction timer will use a counter clocked by a 1000Hz signal (we will measure millisec-
onds). Use an appropriateclock-divider circuit along with the programmable clock to gener-
ate the 1000Hz signal. What frequency would you set the programmable clock to? How many
bits should the clock-divider use?

• The16-bit counter that will keep track of the reaction time. Since it is clocked by a 1000Hz
signal, it will be able to keep track of reaction times up to 65.535 seconds. The counter should
anenable input as shown in the block diagram so it does not start counting until the appropri-
ate time.

• Notice that there is noreset signal connected on the counter. You will need to reset the counter
every time after the first reaction test. Devise a method to allow the 68000 to reset the counter
(the most simple solution just adds one extra wire to the circuit with no additional logic).

Implement each of the components discussed above in Verilog. In the top-level file wrapper.v,
“wire” these components together so that they model the block diagram for the reaction timer.
Compile andsimulate each component, as well as the entire design.Note that the signals in
wrapper.v may be labelled as lds,uds, etc., but they still correspond toLDS, UDS. You may use
the signalsfpga_digital[0] to provide the SW1 signal from the digital board. However it will be
necessary to connect a 40 pin ribbon cable from the Ultragizmo board to the digital board. This
will be demonstrated by a TA.

In most cases this circuit calculates the reaction time with a small error. What are the
sources of this error, and what is its maximum value (in milliseconds)?

In order to use the circuit that you’ve created, it is necessary to write a 68000 program to initiate
the test, and handle the interrupts. Write the software driver in ‘C’. A skeleton program, rt_hw.c,
is given on the webpage.

Examine the program carefully. You should notice that this program uses macros of the form
pokeb(address, data), pokew(address, data), pokel(address, data). These macros write the value
of data into the memory location specified by theaddress. Thepokeb macro writes byte sized
data,pokew writes word (2-bytes) sized data whilepokel write long (4-bytes) sized data. Similarly
the program also uses thepeekw(address) macro. It returns word sized data contained at the spec-
ified address. Code each of these macros in ‘C’ and place them inpoke.h.

Create another makefile to compile this file. Add the following code to the template given:

• Add code to main that will initiate the reaction test. You need to write the appropriate value
into theSTART andSTOP flip-flops as discussed previously. Use thepokew macro.

• Add code to theinterrupt routine so that after it reads the reaction time, it will de-assert the
interrupt request. If you don’t de-assert the request then the processor will continuously get
interrupted. Again write the appropriate value into the flip-flops so that the combinational
logic de-asserts the request.

• Add code to the interrupt routine to print out the reaction time to the terminal. Do this in two
ways. The first method is to simply use theprintf function. The second method is to write your
own function to convert the time to a numeric string and print the string using theputs func-
tion. Compare the sizes of the srec files in the two different versions.

